导师团队
能源催化与理论计算课题组
浏览量:9148   转发量:14

联系方式

Contact Information

  • 所属院系:化工学院
  • 所属专业: 化学工艺
  • 邮箱 : xinlizhu@tju.edu.cn
  • 工作电话 : -

团队简介

Team Introduction

能源催化与理论计算课题组面向能源(生物质、CO2、低碳烷烃等)转化过程的催化关键科学问题,结合实验手段(反应工程、光谱分析,催化材料设计开发)与理论计算手段,研究反应过程的反应机理与活性位,进而调控能源转化过程中的产品分布。


研究内容


  • 研究方向Research Directions
能源(生物质,CO2,低碳烷烃)催化转化,DFT理论计算,催化材料,能源环境化工
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
团队展示

课题组由3位教授,1位副研究员,以及研究生组成。


韩金玉 教授,博导

合作导师:葛庆峰 美国南伊利诺伊大学教授,Journal of CO2 Utilization副主编。




祝-1xiao

祝新利,天津大学教授,博导。

主要经历:天津大学学士(2002)、博士(2007)学位;美国俄克拉荷马大学博士后、高级研究员(2007-2011);天津大学副教授(2011-2019);天津大学教授(2019-)。

学术兼职:

      Science, J Catal, ACS Catal, Appl Catal B, EES, CES, IECR等100余种国际期刊审稿人

      258届美国化学会(ACS)年会 催化分会 Catalytic conversion of biomass derived-oxygenates研讨会 主席

      Catalysis Today客座编辑

      瑞士、波兰等国家自然科学基金评审人

学术成绩:在JACS, J Catal, ACS Catal, Appl Catal B/A等期刊发表SCI收录论文140余篇,SCI源期刊引用5500余次.

      天津市 自然科学三等奖(第二完成人) (2017)

      基金委第四届化学工程青年科学家论坛 优秀报告 (2014)

      教育部 新世纪优秀人才(2012)

      天津大学 北洋青年骨干教师(2012)

      天津市 自然科学二等奖(第四完成人) (2010)

讲授课程: 能源化工基础(本科);化工热力学(本科);能源化工(研究生);英文科技论文写作(部分)





wh3

王华 副研究员,硕士生导师

通讯地址:天津大学北洋园54-E467;电子邮箱:tjuwanghua@tju.edu.cn;办公电话:18526816311

研究方向: 二氧化碳光催化、电催化转化;能源催化反应先进催化材料;计算催化

讲授课程:

    本科生专业课:化学工艺学--国家级精品课、国家级精品资源共享课

    本科生全英文课(留学生班):化学工艺学

    研究生课程:仪器分析测试原理与应用

合作交流:

    2015年获国家基金委访问学者资助 在美国南伊利诺伊大学卡本戴尔分校交流访问 2016.3-2017.3

    2016.8 美国化学会(ACS)秋季年会 口头报告 美国 费城

    2015.7 第13届国际CO2利用大会 口头报告 新加坡

    2013.10 美国化学工程师学会(AIChE)年会口头报告 美国 旧金山

    2011.11美国化学工程师学会(AIChE)年会口头报告 美国 明尼波利斯

获得奖励:

    2012年天津大学青年教师讲课大赛二等奖

    2018年天津大学优秀硕士学位论文指导教师

    2019年天津大学优秀本科生毕业论文指导教师

研究生培养:

    博士生张胜波获2017年度、2019年度博士研究生国家奖学金、连续三次获得天津大学科技创新先进个人、天津大学学生科学奖、天津大学优秀标兵提名奖、天津大学优秀毕业生

    硕士生李梅获2017年度赢创奖学金一等奖,获2018年天津大学优秀硕士学位论文



项目情况

国家自然科学基金项目 (20776109, 21076152, 21276191, 21206117, 21206116, 213732148, 21576204, 21676194, 21873067);

教育部新世纪优秀人才项目 (NCET-12-0407) ;

天津市前沿科学与应用基础研究项目等


合作交流

University of Oklahoma, USA;

Southern Illinois Unversity, USA 


研究成果

祝新利

近五年代表性论文如下(更多论文请参考https://www.webofscience.com/wos/author/rid/A-7328-2011

covers

2025

75. Zhao J.Y. (赵家瑜), Ding H., Wang J., Wu M., Zhu X.L.*, Ge Q.F.* Unraveling the facet dependent activity and surface reactive species in ketonization of acetic acid on CeO2(111) and (110), Journal of Chemical Physics, 2025, 163, 044709. DOI: 10.1063/5.0278891

74. Shang Y.X. (尚玉鑫), Ding H., Liu Z.H., Zhang R.Y., Ge Q.F., Zhu X.L.* Crystal phase dependent electronic metal-support interactions tune the Ru/ZrO2 interfacial sites for enhancing direct deoxygenation of m-cresol, Journal of Catalysis, 2025, 449, 116233. DOI: 10.1016/j.jcat.2025.116233.

73. Yin W.M. (尹文敏), Yang Z.J., Liu Z.H., Liu C.J., Ge Q.F., Zhu X.L.* Selective ketonization of propionic acid on Fe-MFI Zeolites: crucial roles of acid strength and density, Catalysis Science Technology, 2025, 15 (9), 2677-2689. DOI: 10.1039/D5CY00175G (Front Cover)

72. Zhang R.Y. (张若愚), Liu C.J., Han J.Y., Ge Q.F., Zhu X.L.* Mechanistic insights into the selectivity switch in CO2 reduction over Ni/SiO2 and NiMo/SiO2 catalysts: A combined study of temperature programmed desorption, infrared spectroscopy and kinetics, Journal of Catalysis, 2025, 443, 115994. DOI: 10.1016/j.jcat.2025.115994.

71. Liu Z.H. (刘子皓), Guo Y.H., Ge Q.F., Zhu X.L.* Crystal facet engineering of metal oxides for upgrading of biomass derived oxygenates: A perspective, Reaction Chemistry & Engineering, 2025, 10 (4), 750-767. DOI: 10.1039/D4RE00562G. (Front Cover, Invited perspective)

70. Xu J.H. (徐健鸿), Liu Z.H., Zhang R.Y., Ge Q.F., Zhu X.L.* Solid Solution Derived Cu Clusters on Partially Reduced CuCeO2 with Abundant Oxygen Vacancies Enable Efficient Reverse Water Gas Reaction, Chemistry An Asian Journal, 2025, 20 (8), e202401485. DOI: 10.1002/asia.202401485 (Invited)

69. Liu T.S.# (刘铁森), Zhao J.Y.#, Liu Z.H., Zhu X.L.*, Ge Q.F.* Revealing the Mechanism of Ketonization of Acetic Acid on HBEA Zeolite via Metadynamics Simulations, ChemCatChem, 2025, 17(2), e202401442. DOI: 10.1002/cctc.202401442 (Invited)

68. Wang J.(王佳), Liu T.S., Han J.Y., Wang H., Zhu X.L.*, Ge Q.F.* Theoretical investigation on the promotional role of Ag for reverse water-gas shift reaction on Ni catalysts during CO2 reduction, International Journal of Hydrogen Energy, 2025,104, 34-48. DOI: 10.1016/j.ijhydene.2024.05.088

2024

67. Yang W.J. (杨伟军), Zhang M.T., Gao M.Y., Zhang Y., Ye Q., Zhu X.L.* Research Progress on Wood Delignification and Its Applications, Chemistry and Industry of Forest Products (林产化学与工业), 2024, 44(5), 52-65.

66. Han M.L., Zhang Y., Zhang Y., Ye Q., Sillanpää M., Zhu X.L*, Yang W.J.* (杨伟军), A mini-review on polyvinyl alcohol/lignin (nano)composites: Preparation, applications and perspectives, Sustainable Chemistry and Pharmacy, 2024, 42, 101861. DOI: 10.1016/j.scp.2024.101861

65. Zhang R.Y. (张若愚), Xie Z.W., Ge Q.F.*, Zhu X.L.* Recent advancements in integrating CO2 capture from flue gas and ambient air with thermal catalytic conversion for efficient CO2 utilization, Journal of CO2 Utilization, 2024, 89, 102973. DOI: 10.1016/j.jcou.2024.102973 (Invited review)

64. Bi W.L.# (毕文丽), Zhang R.Y.#, Ge Q.F., Zhu X.L.* Supported Inverse MnOx/Pt Catalysts Facilitate Reverse Water Gas Shift Reaction, Catalysts, 2024, 14, 456. DOI: 10.3390/catal14070456 (Invited)

63. Bi W.L.# (毕文丽), Wang J.#, Zhang R.Y., Ge Q.F., Zhu X.L.* Tuning Interfacial Sites of WOx/Pt for Enhancing Reverse Water Gas Shift Reaction, ACS Catalysis, 2024, 14, 11205-11217. DOI: 10.1021/acscatal.4c02341

62. Yang Z.J. (杨子鋆), Ge Q.F., Zhu X.L.* Heteroatom Lewis acid zeolites: synthesis, characterization and application in the conversion of biomass-derived oxygenates, Green Chemistry, 2024, 26, 8068-8099. DOI: 10.1039/D4GC00985A (Invited review)

61. Qin Y.Y. (秦雨瑶), Li L.W., Liu H.X., Han J.Y., Wang H., Zhu X.L.*, Ge Q.F.* Anionic oxyl radical formed on CrVI-oxo anchored on the defect site of the UiO-66 node facilitates methane to methanol conversion, Journal of Chemical Physics, 2024, 160, 134701. DOI: 10.1063/5.0201753

60. Liu H.X. (刘慧娴), Qin Y.Y., Li L.W., Wang H., Zhu X.L.*, Ge Q.F.* CH3 radical-mediated direct methane to methanol conversion over CuO supported on rutile oxides, Journal of Catalysis, 2024, 431, 115388. DOI: 10.1016/j.jcat.2024.115388

59. Liu Z.H.# (刘子皓), Guo Y.H.#, Wang H., Zhu X.L.* Role of Na in the stability enhancement of CeO2 catalysts for ketonization of propionic acid, Applied Catalysis A General, 2024, 672, 119593. DOI: 10.1016/j.apcata.2024.119593

58. Zhao Y.T. (赵云涛), Fontillas N., Wang H., Zhu X.L.*, Mei D.H., Ge Q.F.* Single Pd Atom−In2O3 Catalyzes Production of CH3CH2OH from Atom-Economic C−C Coupling of HCHO and CH4, ACS Catalysis, 2024, 14, 1714-1724. DOI: 10.1021/acscatal.3c05163

57. Yang Z.J. (杨子鋆), Yu Q., Wang H., Ge Q.F., Zhu X.L.* Ketonization of propionic acid over TS-1 and Ti-Beta zeolites: Mechanism and effects of topology and hydrophobicity, Journal of Catalysis, 2024, 429, 115247. DOI: 10.1016/j.jcat.2023.115247

56. Ding S.N. (丁诗凝), Zhu X.L.* Tuning Strong Metal-Support Interactions for Enhancing Direct Deoxygenation of Biomass-Lignin Derived Phenolics, ChemCatChem, 2024, 16, e202301552. DOI: 10.1002/cctc.202301552 (Invited concept)

55. Wang Y.J. (王颖杰), Zhu X.L.* Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene, Chemical Industry and Engineering Progress (化工进展), 2024, 43(7), 3824-3833. DOI: 10.16085/j.issn.1000-6613.2023-1009

54. Huang J. (黄胶), Wang H., Han J.Y., Zhu X.L.* Ketonization of propionic acid on potassium-doped anatase TiO2 catalysts, Journal of Chemical Engineering of Chinese Universities (高校化学工程学报), 2024, 38, 459-467. DOI: https://link.cnki.net/urlid/33.1141.TQ.20240430.1332.008

2023

53. Wang Y.J. (王颖杰), Wang H., Han J.Y., Ge Q.F.*, Zhu X.L.* Enhancing direct deoxygenation of m-cresol to toluene through inhibiting C-C hydrogenolysis via alloying Ni with Cu, Chemical Engineering Research and Design, 2023, 199, 49-60. DOI: 10.1016/j.cherd.2023.09.023 (Invited)

52. Huang J.# (黄胶), Li L.W.#, Wu X.X., Guo Y.H., Yang Z.J., Wang H., Ge Q.F., Zhu X.L.* Crystal facet dependence of the ketonization of propionic acid on anatase TiO2, Catalysis Science Technology, 2023, 13, 5924-5937. DOI: 10.1039/d3cy00917c (Invited)

51. Liu H.X. (刘慧娴), Li L.W., Qin Y.Y., Wang H., Zhu X.L.*, Ge Q.F.* Synergetic C–H bond activation and C–O formation on CuOx facilities facile conversion of methane to methanol. Applied Surface Science, 2023, 627, 157283. DOI: 10.1016/j.apsusc.2023.157283

50. Li L.W. (李立雯), Liu H.X., Qin Y.Y., Wang H., Han J.Y., Zhu X.L.*, Ge Q.F.* Tracking Atomic Diffusion in Surface and Bulk CuO via Neural Network-Based Molecular Dynamics. Journal of Physical Chemistry C, 2023, 127, 6948-6958. DOI: 10.1021/acs.jpcc.3c00404

49. Wu B.W.# (伍博文), Li L.W.#, Wang H., Han J.Y., Zhu X.L.* Ge Q.F.* Role of MoOx/Ni(111) Interfacial Sites in Direct Deoxygenation of Phenol toward Benzene. Catalysis Science Technology, 2023, 13, 2201-2211. DOI: 10.1039/D2CY01529C

48. Wu X.X. (吴晓霞), Liu C.J., Wang H., Ge Q.F., Zhu X.L.* Origin of strong metal-support interactions between Pt and anatase TiO2 facets for hydrodeoxygenation of m-cresol on Pt/TiO2 catalysts. Journal of Catalysis, 2023, 418, 203-215. DOI: 10.1016/j.jcat.2023.01.023

47. Li L.W. (李立雯), Liu H.X., Qin Y.Y., Wang H., Han J.Y., Zhu X.L.* Ge Q.F.* Coupled oxygen desorption and structural reconstruction accompanying reduction of copper oxide. Journal of Chemical Physics, 2023, 158, 054702. DOI: 10.1063/5.0136537

46. Qin Y.Y. (秦雨瑶), Liu H.X., Li L.W., Han J.Y., Wang H., Zhu X.L.* Ge Q.F.* Hydroperoxyl-mediated C-H bond activation on Cr single atom catalyst: An alternative to the Fenton mechanism. Journal of Catalysis, 2023, 417, 323-333. DOI: 10.1016/j.jcat.2022.12.017

45. Zhang C. (张楚), Zhang R.Y., Liu Y.X, Wu X.X., Wang H., Ge Q.F., Zhu. X.L.* Blocking Methanation during Reverse Water Gas Shift Reaction on Ni/SiO2 Catalysts by Surface Ag. ChemCatChem, 2023, 15, e202201284. DOI: 10.1002/cctc.202201284

44. Tan C.X. (谭春晓), Liu H.X., Qin Y.Y., Li L.W., Wang H., Zhu X.L.* Ge Q.F.* Correlation between the Properties of Surface Lattice Oxygen on NiO and Its Reactivity and Selectivity towards the Oxidative Dehydrogenation of Propane. ChemPhysChem, 2023, 24, e202200539. DOI: 10.1002/cphc.202200539

2022

43. Wei A.L. (魏安璐), Zhang R.Y., Qin Y.Y., Wang H., Zhu X.L.* Ge Q.F.* Theoretical Insight into Tuning CO2 Methanation and Reverse Water Gas Shift Reactions on MoOx‑Modified Ni Catalysts. Journal of Physical Chemistry C, 2022, 126, 18078-18089. DOI: 10.1021/acs.jpcc.2c03216 (Front Cover)

42. Zhang R.Y. (张若愚), Ge Q.F., Zhu X.L.* Combining reverse water gas shift with gas fermentation for renewable liquid fuel synthesis. Chem Catalysis, 2022, 2, 2137-2139. DOI: 10.1016/j.checat.2022.08.011 (Invited)

41. Cui B.L. (崔蓓蕾), Wang H., Ge Q.F., Zhu X.L.* Size-Dependent Strong Metal–Support Interactions of Rutile TiO2-Supported Ni Catalysts for Hydrodeoxygenation of m-Cresol. Catalysts, 2022, 12, 955. DOI: 10.3390/catal12090955

40. Cui B.L. (崔蓓蕾), Wang H., Han J.Y., Ge Q.F., Zhu X.L.* Crystal-phase-depended strong metal-support interactions enhancing hydrodeoxygenation of m-cresol on Ni/TiO2 catalysts. Journal of Catalysis, 2022, 413, 880-890. DOI: 10.1016/j.jcat.2022.07.039

39. Liu Y.X. (刘宇新), Li L.W., Zhang R.Y., Guo Y.H., Wang H., Ge Q.F., Zhu. X.L.* Synergetic enhancement of activity and selectivity for reverse water gas shift reaction on Pt-Re/SiO2 catalysts. Journal of CO2 Utilization, 2022, 63, 102128. DOI: 10.1016/j.jcou.2022.102128

38. Guo Y.H.# (郭永华), Qin Y.Y.#, Liu H.X., Wang H., Han J.Y., Zhu X.L.*, Ge Q.F. CeO2 Facet-Dependent Surface Reactive Intermediates and Activity during Ketonization of Propionic Acid. ACS Catalysis, 2022, 12, 2998-3012. DOI: 10.1021/acscatal.1c05994 (Front Cover)

37. Yang Z.J. (杨子鋆), Yu Q., Guo Y.H., Wu X.X., Wang H., Han J.Y., Ge Q.F., Zhu.X.L.* Effect of postsynthesis preparation methods on catalytic performance of Ti-Beta zeolite in ketonization of propionic acid. Microporous and Mesoporous Materials, 2022, 330, 111625. DOI: 10.1016/j.micromeso.2021.111625

2021

36. Fu D.S. (付德森), Wu X.X., Cui B.L., Guo Y.H., Wang H., Han J.Y., Ge Q.F., Zhu X.L.* Ru0.05Ce0.95O2 Solid Solution Derived Ru Catalyst Enables Selective Hydrodeoxygenation of m-Cresol to Toluene, ChemCatChem, 2021, 13, 4814-4823. DOI: 10.1002/cctc.202101239

35. Zhang R.Y. (张若愚), Wei A.L., Zhu M., Wu X.X., Wang H., Zhu X.L.*, Ge Q.F. Tuning reverse water gas shift and methanation reactions during CO2 reduction on Ni catalysts via surface modification by MoOx, Journal of CO2 Utilization, 2021, 52, 101678. DOI: 10.1016/j.jcou.2021.101678

34. Yu Q. (于强), Guo Y.H., Wu X.X., Yang Z.J., Wang H., Ge Q.F., Zhu X.L.* Ketonization of Propionic Acid on Lewis Acidic Zr-Beta Zeolite with Improved Stability and Selectivity. ACS Sustainable Chemistry Engineering, 2021, 9, 7982-7992. DOI: 10.1021/acssuschemeng.1c02290 (Front Cover)

33. Yang F.F. (杨菲菲), Komarneni M.R., Libretto N.J., Li L.W., Zhou W., Miller J.T., Ge Q.F., Zhu X.L.*, Resasco D.E.* Elucidating the Structure of Bimetallic NiW/SiO2 Catalysts and Its Consequences on Selective Deoxygenation of m-Cresol to Toluene. ACS Catalysis, 2021, 11, 2935-2948. DOI: 10.1021/acscatal.0c05560.

32. Zhu X.L.*, Faria J.A.*, Crossley S.P.* Preface: Selected contributions from symposium of Catalytic Conversion of Biomass-Derived Oxygenates in 258th ACS National meeting. Catalysis Today, 2021, 365, 142. DOI: 10.1016/j.cattod.2021.01.004.

31. Wu X.X. (吴晓霞), Ge Q.F.*, Zhu X.L.* Vapor phase hydrodeoxygenation of phenolic compounds on group 10 metal-based catalysts: Reaction mechanism and product selectivity control. Catalysis Today, 2021, 365, 143-161. DOI: 10.1016/j.cattod.2020.12.033.


王华

近年论文:

[1]Shengbo Zhang, Guangming Zhan, Xiaobing Wang, Shiyu Cao, Qifeng Yang, Leixin Yang, Mei Li, Jinyu Han, Xinli Zhu, Hua Wang*, Xiao Liu,* Lizhi Zhang. Well-defined Co–Pt–OH as “electronic pump” on Co-LDH nanocages for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 269:118782-118789.

[2]Mengyun Yang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang*. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/ Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2. Front. Chem. Sci. Eng. 2020, 14(5): 813–823

[3]Mei Li, Shengbo Zhang, Xiao Liu, Jinyu Han, Xinli Zhu, Qingfeng Ge,* Hua Wang*. Polydopamine and Barbituric Acid Co-modified Carbon Nitride Nanospheres for Highly Active and Selective Photocatalytic CO2 Reduction. Eur. J .Inorg. Chem. 2019, 2058–2064 (VIP paper)

[4]Aiguo Han, Mei Li, Shengbo Zhang, Xinli Zhu, Jinyu Han, Qingfeng Ge and Hua Wang*. Ti3+ defective SnS2/TiO2 heterojunction photocatalyst for visible-light driven reduction of CO2 to CO with high selectivity. Catalysts. 2019, 9: 927

[5]Qianwen Li, Mei Li, Shengbo Zhang, Xiao Liu, Xinli Zhu, Jinyu Han, Qingfeng Ge and Hua Wang*.Tuning Sn-Cu catalysis for electrochemical reduction of CO2 on partially reduced oxides SnOx-CuOx-modofied Cu electrodes. Catalysts. 2019, 9: 476

[6]Hongchen Yang1, Shengbo Zhang1, Mei Li, Xiao Liu, Jinyu Han, Xinli Zhu, Qingfeng Ge,* Hua Wang*. Hollow Au-ZnO/CN Nanocages Derived from ZIF-8 for Efficient Visible-Light-Driven Hydrogen Evolution from Formaldehyde Alkaline Solution. Eur. J. Inorg. Chem. 2019, 2761–2767

[7]Shengbo Zhang1, Hua Wang1, Lei Tang, Mei Li, Jianhang Tian, Yue Cui, Jinyu Han, Xinli Zhu, Xiao Liu. Metal-free amino-incorporated organosilica nanotubes for cooperative T catalysis in the cycloaddition of CO2 to epoxides. Catalysis Today, 2019, 324: 59–65.

[8]Shengbo Zhang1, Hua Wang1, Lei Tang, Mei Li, Jianhang Tian, Yue Cui, Jinyu Han, Xinli Zhu, Xiao Liu. Sub 1 nm aggregation-free AuPd nanocatalysts confined inside amino- functionalized organosilica nanotubes for visible-light-driven hydrogen evolution from formaldehyde, Applied Catalysis B: Environmental, 2018, 220: 303–313.

[9]Shengbo Zhang, Qilong Wu, Lei Tang, Yuge Hu, Mengyun Wang, Jiankang Zhao, Mei Li, Jinyu Han, Xiao Liu,* Hua Wang*. Individual High-Quality N‐Doped Carbon Nanotubes Embedded with Nonprecious Metal Nanoparticles toward Electrochemical Reaction. ACS Appl. Mater. Interfaces, 2018, 10(46):39757-39767.

[10]H.J. Yuan, X.L. Zhu, J.Y. Han, H. Wang*, Q.F. Ge*. Rhenium-promoted selective CO2 methanation on Ni-based catalyst, Journal of CO2 Utilization, 2018, 26: 8-18.

[11]Mei Li1, Hua Wang1, Xiaobo Li, Shengbo Zhang, Jinyu Han, Anthony F. Masters and Thomas Maschmeyer*, Xiao Liu*. Organosilica Nanotube Templates: One-pot Synthesis of Carbon Modified Polymeric Carbon Nitride Nanorods for Photocatalysis, ChemCatChem, 2018, 10: 581-589.

[12]L.N. Zhai, C.N. Cui, Y.T. Zhao, X.L. Zhu, J.Y. Han, H. Wang*, Q.F. Ge*. Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study. Journal of Physical Chemistry. C. 2017, 121 (30):16275–16282.

[13]F.Y. Geng, H. Wang,* X. Liu, X.L. Zhu, J.Y. Han. Regulating morphology of Ni-(oxy) hydroxide nanoplates on nickel foam by organic solvent and their electrochemical property for oxygen evolution reaction. Journal of Alloys and Compounds. 2017, 695: 2040-2047

[14]C.N Cui, J.Y. Han, X.L. Zhu, X. Liu, H. Wang*, D.H. Mei, Q.F. Ge*. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode. Journal of Catalysis. 2016, 343: 257-265

[15]H. Wang*, Y.G. Guo, C.R. Chang, X.L. Zhu*, X. Liu, J.Y. Han,Q.F. Ge.Enhancing tungsten oxide/SBA-15 catalysts for hydrolysis of cellobiose through doping ZrO2. Applied Catalysis A, General. 2016, 523: 182-192

[16]X.P. Zhang, H. Wang*, X. Liu, J.Y. Han, X.L. Zhu*, Q.F. Ge. Effect of calcination and metal loading on the characteristics of Co/NaY catalyst for.liquid-phase hydrogenation of ethyl lactate to 1,2-propanediol. Microporous and Mesoporous Materials. 2016, 233: 184-193

[17]H. Wang*, Z.Z. Han, L.B. Zhang, X. Liu, X.L. Zhu, J.Y. Han,Q.F. Ge.Enhanced CO selectivity and stability for electrocatalytic reduction of CO2 on electrodeposited nanostructured porous Ag electrode. Journal of CO2 Utilization, 2016,15,41-49.

[18]H. Wang*, J. Lv, X. Liu, X.L. Zhu, J.Y. Han,Q.F. Ge*.Efficient Hydrolytic Hydrogenation of Cellulose on Mesoporous HZSM-5 Supported Ru Catalysts. Topics in Catalysis, 2015,58: 623-632.

[19]N. Jin, J.Y. Han, H. Wang*, X.L. Zhu, Q.F. Ge, A DFT study of oxygen reduction reaction mechanism over O-doped graphene-supported Pt-4, Pt3Fe and Pt3V alloy catalysts, Int J Hydrogen Energ, 2015, 40: 5126-5134.


联系我们
学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

天津大学研究生院招生办公室

文件上传中...

分享
回到
首页
回到
顶部