联系方式
Contact Information
团队简介
Team Introduction
天津大学互联感知微电子实验室隶属于天津大学微电子学院,依托天津市成像与感知微电子技术重点实验室,主要开展微波毫米波通信与成像集成电路、基于SISL平台系统集成技术、无线通信系统天线设计,以及应用于微波电路的人工神经网络技术(软件与算法)研究。团队负责人由IEEE Fellow、“国家杰出青年科学基金”获得者、天津大学微电子学院院长马凯学教授担任。
团队现有教授8人,副教授/副研究员6人,助理研究员2人。其中加拿大两院院士1人,国家杰青1人,国家级青年人才4人,IEEE Fellow 2人。现有博士生35人,硕士生100余人。团队现有设备总价值逾1亿元人民币,拥有国际一流的集微波太赫兹器件参数提取、微电子系统设计、集成系统可靠性测试于一体的科研测试平台,可在100MHz-1140GHz频率范围内完成毫米波/太赫兹器件、电路、封装、系统及可靠性测试。基于介质集成悬置线(SISL)开发并搭建了具有完全自主知识产权的微系统集成加工平台。
团队近年承担/完成包括国家重点研发计划(2项牵头)、国家科技重大专项(1项牵头)、国家自然科学基金重点项目(2项牵头)、863等项目/课题30余项,累计经费超过1亿元。团队在IEEE TMTT、JSSC、TCAS-I、TAP等微波、集成电路领域内顶级期刊、会议累计发表八百余篇高水平学术论文。
团队目前主要包括四个研究方向:微波毫米波通信与成像集成电路、基于SISL平台的系统集成、无线通信系统中的天线、应用于微波电路的人工神经网络技术(软件与算法)。
一、 科研方向一:微波毫米波通信与成像集成电路
射频毫米波通信集成电路,亚毫米波与太赫兹成像电路,CMOS35等异质集成工艺、方法及电路,毫米波/太赫兹相控阵系统,高能效电力电子,射频集成电路与微纳传感器协同设计,应用于物联网和生物医疗系统的超低功耗无线集成电路。
二、科研方向二:基于SISL平台的系统集成
独有的新型介质集成悬置线 Substrate Integrated Suspended Line (SISL),基于该平台,已开展了相关微波电路的研究工作,包括无源有源电路以及天线等,微波毫米波电路器件非线性设计与先进测量方法,大功率微波毫米波电路器件及其可靠性,高速PCB/IC及封装的信号完整性与电磁兼容,相关研究成果发表在IEEE文章>50篇。
三、科研方向三:无线通信系统中的天线
新一代移动通信系统天线,如基站天线、圆极化天线、MIMO天线、八木天线、毫米波/太赫兹天线等,发表SCI期刊论文30余篇,其中在天线研究领域国际顶级刊物IEEE Transactions on Antennas and Propagation 上发表论文17篇,ESI高被引论文(含扩展版)2篇,相关技术产值超过五千万人民币。
四、科研方向四:应用于微波电路的人工神经网络技术(软件与算法)
用于射频、微波电路的设计自动化技术,微波有源和无源设备的自动化建模技术,应用于电磁结构、电路、系统设计的优化技术,开发世界上首个用神经网络进行微波建模的软件Neuro Modeler,基于该平台已开展相关微波器件的建模工作,包括滤波器、功率放大器等,相关研究发表TMTT 60多篇。
团队近五年在相关领域承担/完成包括国家重点研发计划(2项牵头)、国家科技重大专项(1项牵头)、国家自然科学基金重点项目(2项牵头)、863等项目/课题30余项,累计经费超过1亿元。部分项目如下:
1. 国家重点研发计划,高精度毫米波/太赫兹雷达与成像芯片技术,2019.06-2023.06
2. 国家重点研发计划,CMOS兼容的太赫兹源,探测和阵列成像,2016.07-2021.06
3. 国家重点研发计划,CMOS/BiCMOS室温连续操作太赫兹探测源和成像仪,2016.07-2021.06
4. 国家科技重大专项,面向行业专网应用的带宽可变频点可变无线宽带射频芯片研发,2012.01-2015.12
5. 国家科技重大专项,载波体制超宽带高速无线通信芯片研发与应用示范,2009.01-2013.12
6. 国家科技重大专项,传感器网络电磁频谱监测关键技术
7. 863项目,毫米波超大容量室内局域无线接入技术研究与验证课题(子课题),2015.01-2016.12
8. 国家自然科学基金重点项目,基于新型磁介多功能电子材料的微波器件及电路研究,2019.01-2023.12
9. 国家自然科学基金重点项目,基于仿生机理的高速CMOS视觉系统芯片研究,2015.01-2019.12
10. 国家自然基金面上项目,微瓦级无晶振无锁相环接收机关键技术研究,2018.01-2021.12
11. 国家自然科学基金面上项目,新型介质集成悬置线前端电路与系统,2015.01-2018.12
12. 国家自然科学基金面上项目,微波电子器件与系统建模优化先进方法研究,2013.01-2016.12
13. 国家 “千人计划” 青年项目,集成电路系统,2015.01-2018.12
14. 国家杰出青年科学基金项目,微波毫米波电路及集成系统,2017.01-2021.12
15. 国家自然科学基金青年基金项目,硅基CMOS太赫兹双向放大器技术研究,2018.01-2020.12
16. 国家自然科学基金青年基金项目,微波无源器件非线性的实时特征提取与参数化网络建模研究,2020.01-2022.12
17. 国家自然科学基金青年基金项目,融合高K介质与SISL的天线技术研究,2021.01-2023.12
18. 国家自然科学基金青年基金项目,纳米管微波毫米波(26.5GHz-330GHz)散射参数测量及特征参数提取研究,2016.01-2018.12
19. 国家级重点实验室基金项目,人工神经网络方法在射频功率放大器及功率合成设计中的应用研究,2016.03-2017.12
20. 中央高校基本科研业务费重点培育项目,新型介质集成悬置线雷达前端技术,2017.01-2019.12
21. 军委科技委国防创新项目,xxx关键技术研究,2018.10-2020.12
22. 军委科技委国防创新项目,xxx关键芯片和系统研究,2017.07-2018.08
23. 天津市自然科学基金重点项目,具有无源唤醒功能和极低待机功耗的有源RFID系统的研究与实现,2010.04-2012.03
24. 天津市科技兴海专项,海洋环境适用通讯传输网研发与应用,2011.10-2015.07
25. 天津市青年基金项目,毫米波成像电路设计方法与关键模块研究,2015.04-2018.03
26. 南京市人社局,留学回国人员科技创新择优资助,2018
27. 江苏省科技厅自然基金面上项目,高倍频程 CMOS多功能低噪声放大器,2019.07-2022.06
28. 天津大学自主创新基金,射频终端低剖面高增益天线研究,2020.01-2020.12
29. 天津大学自主创新基金,5G移动通信基站天线的研究,2019.01-2019.12
30. 天津大学青岛海洋技术研究院委托项目,海上XX通信系统专用射频芯片研发与产业化示范应用,2017.09-2019.08
31. 东南大学/南京医科大学合作面上项目,基于EEMD动态降噪算法的可穿戴式自主肌电控制功能性电刺激系统关键技术研究,2017.07-2019.06
32. 中国电子科技集团,XXXX天线技术研究,2019. 01-2020. 12
33. 中国电子科技集团公司54所,xxx单片技术研究,2019.01-2020.01
34. 中国电子科技集团公司54所,线性功率放大器设计,2011.12-2012.11
35. 中兴通讯委托技术开发项目,2.14GHz高效开关功率放大器,2011.12-2012.12
36. 南京美辰微电子有限公司,Ka波段射频前端芯片关键技术研究,2017.08-2018.12
37. 南京美辰微电子有限公司,1.25G\2.5G\10G bps 噪声识别集成电路研究与设计,2017.03-2017.06
课题组在相关领域发表高水平学术论文800余篇,包括IEEE TMTT、JSSC、TAP、TCAS-I等本领域TOP期刊。
近几年部分代表性论文列表:
ISSCC(国际固态电路顶级会议):
1. W. Wang, F. Guo, T. Chen, K. Wang , “A W-Band Power Amplifier with Distributed Common-Source GaN HEMT and 4-Way Wilkinson-Lange Combiner Achieving 6W Output Power and 18% PAE at 95GHz,” in 2020 IEEE International Solid-State Circuits Conference, 376-377,San Francisco.
2. F. Meng, K. Ma, and K. S. Yeo, "A 130-to-180GHz 0.0035mm2 SPDT switch with 3dB-loss and 23.7dB-isolation in 65nm bulk CMOS," in 2015 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 34-36, San Francisco.
3. W. Ye, K. Ma, and Kiat Seng Yeo, “A 2-to-6 GHz class-AB power amplifier with 28.4% PAE in 65nm CMOS supporting 256 QAM,”,in 2015 IEEE International Solid-State Circuits Conference, pp. 38-39, San Francisco.
4. K. Wang, J. Koo, R. Ruby and B. Otis, "21.7 A 1.8mW PLL-free channelized 2.4GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 372-373, San Francisco.
5. F. Zhang, K. Wang, J. Koo, Y. Miyahara and B. Otis, "A 1.6mW 300mV-supply 2.4GHz receiver with −94dBm sensitivity for energy-harvesting applications," in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 456-457, San Francisco.
IMS:
1. N. Yan, K. Ma, H. Zhang, “A novel 24-GHz air-filled cavity-backed slot antenna array with out-of-phase power divider for automotive radar system,” in 2018 IEEE/MTT-S International Microwave Symposium, pp. 1589-1592, Philadelphia.
2. C. Zhang, H. Fu, et al. “Extreme learning machine for the behavioral modeling of RF power amplifiers,” in 2017 IEEE/MTT-S International Microwave Symposium, Honololu.
一区论文:
1. F. Feng, J. Zhang, J. Jin, W. Zhang, Z. Zhao, and Q. J. Zhang*, “Adjoint EM sensitivity analysis for fast frequency sweep using matrix Pade via Lanczos technique based on finite element method,” in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2413-2428, May 2021.
2. W. Zhang, F. Feng*, W. Liu, S. Yan, J. Zhang, J. Jin, and Q. J. Zhang, “Advanced Parallel Space-Mapping-Based Multiphysics Optimization for High Power Microwave Filters,” in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2470-2484, May 2021.
3. F. Feng, W. Na*, W. Liu, S. Yan, L. Zhu, and Q. J. Zhang, “Parallel gradient-based EM optimization for microwave components using adjoint-sensitivity-based neuro-transfer function surrogate,” in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 9, pp. 3606-3620, Sep. 2020.
4. Y. Wang, M. Yu*, and K. Ma, “Substrate Integrated Suspended Slot Line and Its Application to Differential Coupler”, in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 12, pp. 5178–5189, Dec. 2020.
5. J. Zhang, F. Feng, W. Zhang, J. Jin, J. Ma and Q. Zhang, "A Novel Training Approach for Parametric Modeling of Microwave Passive Components Using Padé via Lanczos and EM Sensitivities," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2215-2233, June 2020.
6. F. Feng, J. Zhang, J. Jin, W. Na, S. Yan and Q. Zhang, "Efficient FEM-Based EM Optimization Technique Using Combined Lagrangian Method With Newton’s Method," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2194-2205, June 2020.
7. W. Zhang, F. Feng, S. Yan, W. Na, J. Ma and Q. Zhang, "EM-Centric Multiphysics Optimization of Microwave Components Using Parallel Computational Approach," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 2, pp. 479-489, Feb. 2020.
8. F. Feng et al., "Multifeature-Assisted Neuro-transfer Function Surrogate-Based EM Optimization Exploiting Trust-Region Algorithms for Microwave Filter Design," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 2, pp. 531-542, Feb. 2020.
9. N. Yan, K. Ma and Y. Luo, "An SISL Sequentially Rotated Feeding Circularly Polarized Stacked Patch Antenna Array," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2060-2067, March 2020.
10. Y. Luo, Z. Chen and K. Ma, “A single-layer dual-polarized differentially-fed patch antenna with enhanced gain and bandwidth operating at dual compressed high-order modes using characteristic mode analysis” IEEE Trans. Antennas Propag., vol.68, no. 5, pp. 4082-4087, May. 2020.
11. X. Chen, et al, "Electrical Intermodulation Tuner by Multiple Nonlinearities Superposition Using Star Topology," in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 7, pp. 3951-3953, July 2020.
12. M. Li, K. Ma, J. Hu and Y. Wang, "Design and Fabrication of Low Phase Noise Oscillator Using Q Enhancement of the SISL Cavity Resonator," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp. 4260-4268, Oct. 2019.
13. Y. Wang and K. Ma, "Low-Loss SISL Patch-Based Phase Shifters and the Mixer Application," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 6, pp. 2302-2312, June 2019.
14. Y. Wang and K. Ma*, “Low-Loss SISL Patch-Based Phase Shifters and the Mixer Application”, in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 6, pp. 2302–2312, Jun. 2019.
15. Y. Chu, K. Ma and Y. Wang, "A Novel Triplexer Based on SISL Platform," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 3, pp. 997-1004, March 2019.
16. J. Jin, C. Zhang, F. Feng, W. Na, J. Ma and Q. Zhang, "Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp. 4140-4155, Oct. 2019.
17. N. Yan, K. Ma, H. Zhang and P. Jia, "An SISL Triple-Band Multimode Stacked-Patch Antenna With L-Strips for Multiband Applications," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 1284-1288, Feb. 2019.
18. Y. Luo, Z. N. Chen and K. X. Ma, "Enhanced bandwidth and directivity of a dual-mode compressed high-order mode stub-loaded dipole using characteristic mode analysis," in IEEE Transactions on Antennas and Propagation, vol.67, no. 3, pp. 1922-1925, Mar. 2019.
19. K. Ma, Y. Wang, W. Li and Y. Chen, "A Novel Compact Self-Packaged SPDT Switchable BPFs Based on SISL Platform," in IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 7239-7249, Sept. 2019.
20. F. Meng, and et al., "Heterogeneous Integration of GaN and BCD Technologies and Its Applications to High Conversion-ratio DC-DC Boost Converter IC," in IEEE Transactions on Power Electronic, vol. 34, pp. 1993-1996, Mar. 2019.
21. X. Chen, et al, “Compact Intermodulation Modulator for Phase Reference in Passive Intermodulation Measurements” IEEE Transactions on Instrumentation and Measurement, vol. 68. No. 12, pp. 4612-4614, 2019.
22. X. Chen, et al. “Empirical Modeling of Contact Intermodulation Effect on Coaxial Connectors,” in IEEE Transactions on Instrumentation and Measurement, 2019.
23. K. Wang, L. Qiu, J. Koo, R. Ruby, B. Otis, “Design of A 1.8-mW PLL-free 2.4-GHz Receiver Utilizing Temperature-Compensated FBAR Resonator,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 6, 1628-1639,2018
24. Y. Wang, K. Ma and Z. Jian, "A Low-Loss Butler Matrix Using Patch Element and Honeycomb Concept on SISL Platform," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3622-3631, Aug. 2018.
25. Z. Ke, S. Mou, K. Ma and F. Meng, "A 0.7/1.1-dB Ultra-Low Noise Dual-Band LNA Based on SISL Platform," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4576-4584, Oct. 2018.
26. W. Na, W. Liu, L. Zhu, F. Feng, J. Ma and Q. Zhang, "Advanced Extrapolation Technique for Neural-Based Microwave Modeling and Design," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4397-4418, Oct. 2018.
27. C. Zhang, J. Jin, W. Na, Q. Zhang and M. Yu, "Multivalued Neural Network Inverse Modeling and Applications to Microwave Filters," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3781-3797, Aug. 2018.
28. Y. Wang, K. Ma*, and Z. Jian, “A Low-Loss Butler Matrix Using Patch Element and Honeycomb Concept on SISL Platform”, in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3622–3631, Aug. 2018.
29. J. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma and Q. Zhang, "Polynomial Chaos-Based Approach to Yield-Driven EM Optimization," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3186-3199, July 2018.
30. W. Zhang et al., "Space Mapping Approach to Electromagnetic Centric Multiphysics Parametric Modeling of Microwave Components," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3169-3185, July 2018.
31. N. Yan, K. Ma and H. Zhang, "A Novel Substrate-Integrated Suspended Line Stacked-Patch Antenna Array for WLAN," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3491-3499, July 2018.
32. Y. He, K. Ma, N. Yan, Y. Wang and H. Zhang, "A Cavity-Backed Endfire Dipole Antenna Array Using Substrate-Integrated Suspended Line Technology for 24 GHz Band Applications," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4678-4686, Sept. 2018.
33. F. Meng, K. Ma, K. S. Yeo, and S. Xu, “Monolithic Sub-Terahertz SPDT Switches With Low Insertion Loss and Enhanced Isolation,” IEEE Trans. THz Sci. Technol., vol. 8, pp. 192-200, Mar. 2018.
34. S. Zhou, H. Fu, J. Ma and Q. Zhang, "A Neural Network Modeling Approach to Power amplifiers Taking into Account Temperature Effects," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 1028-1031.
35. H. Wu et al., "A Compact Ultrabroadband Stacked Traveling-Wave GaN on Si Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3306-3314, July 2018
36. J. Hu, K. Ma, S. Mou and F. Meng, "A Seven-Octave Broadband LNA MMIC Using Bandwidth Extension Techniques and Improved Active Load," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3150-3161, Oct. 2018.
37. Z. Ma, K. Ma, S. Mou and F. Meng, "Quasi-Lumped-Element Filter Based on Substrate-Integrated Suspended Line Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 5154-5161, Dec. 2017.
38. L. Li, K. Ma and S. Mou, "Modeling of New Spiral Inductor Based on Substrate Integrated Suspended Line Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 2672-2680, Aug. 2017.
39. N. Mahalingam, Y. Wang, B. K. Thangarasu, K. Ma and K. S. Yeo, "A 30-GHz Power-Efficient PLL Frequency Synthesizer for 60-GHz Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4165-4175, Nov. 2017.
40. W. Liu, W. Na, L. Zhu, J. Ma and Q. Zhang, "A Wiener-Type Dynamic Neural Network Approach to the Modeling of Nonlinear Microwave Devices," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 2043-2062, June 2017.
41. F. Feng, V. Gongal-Reddy, C. Zhang, J. Ma and Q. Zhang, "Parametric Modeling of Microwave Components Using Adjoint Neural Networks and Pole-Residue Transfer Functions With EM Sensitivity Analysis," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 1955-1975, June 2017.
42. W. Na, F. Feng, C. Zhang and Q. Zhang, "A Unified Automated Parametric Modeling Algorithm Using Knowledge-Based Neural Network and Optimization," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 729-745, March 2017.
43. Y. Luo* and Z. N. Chen, “Compressed dipoles resonating at higher-order modes with enhanced directivity,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 5697-5701, Nov. 2017.
44. Q. Cheng, H. Fu, S. Zhu and J. Ma, "Two-Stage High-Efficiency Concurrent Dual-Band Harmonic-Tuned Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 10, pp. 3232-3243, Oct. 2016.
45. 40.Q. Cheng, H. Fu, S. Zhu and C. Liu, "Comments on “Design of Highly Efficient Broadband Class-E Power Amplifier Using Synthesized Low-Pass Matching Networks”," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1678-1678, May 2016.
46. Y. Luo, Q.-X. Chu and D.-L. Wen, “A ±45o dual-polarized base-station antenna with enhanced cross-polarization discrimination via addition of four parasitic element placed in a square contour,” IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1514-1519, Apr. 2016.
47. W. An, S. Xu, F. Yang and M. Li, "A Double-Layer Transmitarray Antenna Using Malta Crosses With Vias," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1120-1125, March 2016.
48. K. Ma, T. B. Kumar and K. S. Yeo, "A reconfigurable K-/Ka-band power amplifier with high PAE in 0.18-um SiGe BiCMOS for multi-band applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4395-4405, Dec. 2015.
49. Y. Luo and Q.-X. Chu, “Oriental crown-shaped differentially-fed dual-polarized multi-dipole antenna,” in IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4678-4685, Nov. 2015.
50. Y. Luo, Q.-X. Chu and L. Zhu, “A miniaturized wide-beamwidth circular polarized planar antenna via two pairs of folded dipoles in a square contour,” in IEEE Trans. Antennas Propag., vol. 63, no. 8, pp.3753-3759, Aug.2015.
51. Y. Luo, Q.-X. Chu and L. Zhu, “A low-profile wide-beamwidth circularly- polarized antenna via two pairs of parallel dipoles in a square contour,” in IEEE Trans. Antennas Propag., vol. 63, no. 3, pp.931-936, Mar.2015.
52. Q. Zou, K. Ma and K. S. Yeo, "A Low Phase Noise and Wide Tuning Range Millimeter-Wave VCO Using Switchable Coupled VCO-Cores," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 2, pp. 554-563, Feb. 2015.
53. Y. Xu, H. Fu, J. Ma and H. J. Trussell, "International Education [Point of View]," in Proceedings of the IEEE, vol. 103, no. 10, pp. 1691-1697, Oct. 2015.
54. F. Meng, K. Ma, K. S. Yeo, C. C. Boon, W. M. Lim, and S. Xu, "A 220-285 GHz SPDT switch in 65-nm CMOS using switchable resonator concept," IEEE Trans. THz Sci. Technol., vol. 5, pp. 649-651, Jul. 2015.
55. T. B. Kumar, K. Ma, K. S. Yeo and W. Yang, "A 35-mW 30-dB Gain Control Range Current Mode Linear-in-Decibel Programmable Gain Amplifier With Bandwidth Enhancement," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3465-3475, Dec. 2014.
56. K. Ma, S. Mou and K. S. Yeo, "A Miniaturized Millimeter-Wave Standing-Wave Filtering Switch With High P1dB," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1505-1515, April 2013.
57. K. Wang, Z. Wang and X. Lei, "A SAW-Less First Folded-Conversion Second Down-Conversion Receiver for Multistandard Broadcasting Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1674-1680, April 2013.
58. Y. Luo, Q.-X. Chu, J.-F. Li and Y.-T. Wu, “A compact planar H-Shaped directive antenna and its application in MIMO antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4810-4814, Sep. 2013.
59. W. X. An, H. Wong, K. L. Lau, S. F. Li and Q. Xue, "Design of Broadband Dual-Band Dipole for Base Station Antenna," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1592-1595, March 2012.
60. X. Luo, J. Ma, K. S. Yeo and E. Li, "Compact Ultra-Wideband (UWB) Bandpass Filter With Ultra-Narrow Dual- and Quad-Notched Bands," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1509-1519, June 2011.
61. L. Liu, J. Ma and G. Ng, "Electrothermal Large-Signal Model of III–V FETs Including Frequency Dispersion and Charge Conservation," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3106-3117, Dec. 2009.
二区论文:
1. X. Chen, et al, “Photo-charge modulated passive intermodulation on Ag2O/Ag junction in high power microwave devices”, IEEE Microwave and Wireless Components Letters, vol. 30, no. 3, pp. 268-271, 2020.
2. J. Hu, K. Ma, S. Mou and F. Meng, "Analysis and Design of a 0.1–23 GHz LNA MMIC Using Frequency-Dependent Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 9, pp. 1517-1521, Sept. 2019.
3. F. Feng, J. Zhang, W. Zhang, Z. Zhao, J. Jin and Q. Zhang, "Coarse- and Fine-Mesh Space Mapping for EM Optimization Incorporating Mesh Deformation," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 8, pp. 510-512, Aug. 2019.
4. F. Feng, C. Zhang, W. Na, J. Zhang, W. Zhang and Q. Zhang, "Adaptive Feature Zero Assisted Surrogate-Based EM Optimization for Microwave Filter Design," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 1, pp. 2-4, Jan. 2019.
5. J. Xiao, X. Qi, H. Wang and J. Ma, "High Selective Balanced Bandpass Filters Using End-Connected Conductor-Backed Coplanar Waveguide," in IEEE Access, vol. 7, pp. 16184-16193, 2019.
6. J. Koo, K. Wang, R. Ruby, B. Otis, “A 2GHz FBAR based Transformer Coupled Oscillator design with Phase Noise Reduction,” in IEEE Transactions on Circuits and Systems II: Express Briefs,66(4), 542-546,2019
7. X. Chen, et al, “Coplanar Intermodulation Reference Generator using Substrate Integrated Waveguide with Integrated Artificial Nonlinear Dipole,” IEEE Transactions on Electromagnetic Compatibility, 2019.
8. Keping. Wang*, Zhigong Wang, Brain Otis, “A 580-µW 2.4-GHz Zigbee Receiver Front-end with Transformer-Coupling Technique,” in IEEE Microwave and Wireless Components Letters, 28(2), pp 174-176,2018
9. L. Qiu, C. Yang, Keping Wang*, Y. Zheng, “A High-Speed 2b/cycle SAR ADC With Time Domain Quantization,” in IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 26(10), pp 2175-2179,2018
10. L. Qiu, Keping Wang*, K. Tang, Y. Zheng, “A 10-bit 300MS/s 5.8mW SAR ADC With Two-Stage Interpolation for PET Imaging,” in IEEE Sensors Journal (JSEN), vol. 18, no. 5, pp 2006-2014,2018
11. X. Chen, et al, “Analytic Passive Intermodulation Behavior on Coaxial Connector using Monte-Carlo Approximation,” IEEE Transactions on Electromagnetic Compatibility, vol. 60, no. 5, pp.1207-1214, 2018.
12. X. Chen, et al, “Reconfigurable Passive Intermodulation Behavior on Nickel-Coated Cell Array,” IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 4, pp. 1027–1034, 2017.
13. X. Chen, et al, “On-line Passive Intermodulation Test Method for Conductive Coatings,” Electronics Letters, vol. 53, no.3, pp. 165-167, 2017.
14. X. Chen, et al, “Novel Programmable Passive Intermodulation Generator Using Nonlinear Rotating Disk,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 10, pp. 945-947, 2017.
15. X. Chen, et al, “Broadband Dual-Port Intermodulation Generator for Passive Intermodulation Measurements,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 518–520, 2017.
16. Ningning Yan, Kaixue Ma, Haobin Zhang, Yun He. Dual band antenna with comb radiators for WLAN applications using SISL technology[J]. Electronics Letters, 2017, 53(13): 822-824
17. F. Meng*, K. Ma*, K. S. Yeo*, S. Xu*, C. C. Boon, and W. M. Lim, "A 57-to-64 GHz 0.094-mm2 5-bit passive phase shifter in 65-nm CMOS," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, pp. 1917-1925, May 2016.
18. H. Wu, Q. Cheng, X. Li and H. Fu, "Analysis and Design of an Ultrabroadband Stacked Power Amplifier in CMOS Technology," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
19. F. Meng, K. Ma, K. S. Yeo, C. C. Boon, W. M. Lim and S. Xu, "A 220–285 GHz SPDT Switch in 65-nm CMOS Using Switchable Resonator Concept," in IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 4, pp. 649-651, July 2015.
20. S. Xu, K. Ma, F. Meng and K. S. Yeo, "Novel Defected Ground Structure and Two-Side Loading Scheme for Miniaturized Dual-Band SIW Bandpass Filter Designs," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 4, pp. 217-219, April 2015.
21. Yang, Geliang; Wang, Zhigong; Wang, Keping, “Modified T-Model With an Improved Parameter Extraction Method for Silicon-Based Spiral Inductors,” in IEEE Microwave and Wireless Components Letters , vol. 24, no. 11, pp. 817-819,2014
22. W. An, S. Li, W. Sun and Y. Li, "Low-Profile Wideband Microstrip Antenna Based on Multiple Modes With Partial Apertures," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 7, pp. 1372-1376, July 2019.
23. N. Yan, K. Ma, H. Zhang and Z. Jian, "A Novel Substrate Integrated Suspended Line Wideband Leaky-Wave Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2642-2645, 2017.
24. W. An, Y. Li, H. Fu, J. Ma, W. Chen and B. Feng, "Low-Profile and Wideband Microstrip Antenna With Stable Gain for 5G Wireless Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 4, pp. 621-624, April 2018.
课题组所获部分专利如下所示:
1. 马凯学,赵俊炎,王勇强. 基于馈电网络的时域空间域结合的雷达目标检测方法[P]. CN109001690B,2020-05-12.
2. 马凯学,王勇强. 基于介质集成悬置线和高介电材料的电容结构[P]. CN109166729B,2020-05-12.
3. 马凯学,马援,王勇强. 一种基于介质集成悬置线的六端口网络[P]. CN108470967B,2020-04-07.
4. 马凯学,王勇强,简泽. 一种基于介质集成悬置线的巴特勒矩阵网络结构[P]. CN107293842B,2020-03-31.
5. 陈雄,贺永宁. 一种基于介质集成波导的可调互调校准源[P]. CN109188328B,2020-03-17.
6. 牟首先,张轲,马凯学,王勇强. 基于超材料的介质集成悬置线结构[P]. CN108365316B,2020-02-21.
7. 马凯学,陈殷洲,王勇强. 一种基于3D打印的介质集成悬置线电路结构[P]. CN107529274B,2020-01-07.
8. 马凯学,马宗琳,孟凡易. 一种多标准全双工直接变频式收发机[P]. CN106941365B,2020-01-07.
9. 马凯学,王勇强,简泽. 基于锡压的介质集成悬置线电路实现方法[P]. CN107580428B,2019-12-10.
10. 马建国,朱媛媛,傅海鹏,赵升. 一种HEMT的温度相关的I-V特性及其高阶跨导的模型[P]. CN106295064B,2019-10-25.
11. 马凯学,初雨桐,王勇强. 基于介质集成悬置线的多工器结构[P]. CN108598638B,2019-10-11.
12. 马凯学,乔波,孔令旭,杨辉. 多功能智能水流量测控装置[P]. CN106094902B,2019-07-02.
13. 马凯学,胡建全,孔令旭,牟首先. 一种宽带瞬态复杂电磁频谱监测仪[P]. CN106452623B,2019-06-18.
14. 马凯学,王勇强,牟首先. 基于变压器的差分耦合电路及介质集成悬置线差分耦合器[P]. CN106411314B,2019-03-19.
15. 牟首先,江轩,马凯学,孟凡易. 一种基于不对称交叉连接的超宽带倍频器[P]. CN108900164A,2018-11-27.
16. 马建国,成千福,刘畅,朱守奎,傅海鹏. 一种高效率并联型E逆F类功率放大器匹配电路[P]. CN108736845A,2018-11-02.
17. 马凯学,王勇强,闫宁宁,李连岳,牟首先.多层电路板铆接结构及其构成的悬置线电路及其实现方法[P].CN105142329B,2018-05-08.
18. 马建国,成千福,刘畅,朱守奎,傅海鹏. 一种新型高效率逆F类功率放大器多次谐波匹配电路[P]. CN206686145U,2017-11-28.
19. 马建国,成千福,刘畅,朱守奎,傅海鹏. 一种高效率并联型E逆F类功率放大器匹配电路[P]. CN206620103U,2017-11-07.
20. 马凯学,杨辉,乔波,牟首先. 一种灌溉系统[P]. CN206584198U,2017-10-24.
21. 孔永丹,肖兴慰,罗宇,褚庆昕. 具有稳定波瓣宽度和共模抑制特性的宽带差分多偶极子天线[P]. CN206225546U,2017-06-06.
22. 马凯学,乔波,杨辉. 一种数字化恒温恒流排水控制装置[P]. CN206001100U,2017-03-08.
23. 贺永宁,陈雄. 基于传输线结构的宽带非接触式镀层无源互调测试装置[P]. CN106053534A,2016-10-26.
24. 贺永宁,陈雄. 基于双模式传输线结构的镀层材料无源互调在线测试装置[P]. CN105891261A,2016-08-24.
25. 马凯学,王勇强,闫宁宁,李连岳,牟首先. 多层电路板铆接结构及其构成的悬置线电路及其实现方法[P]. CN105142329A,2015-12-09.
26. 褚庆昕,罗宇. 一种加载垂直寄生单元的±45°双极化基站天线[P]. CN204834845U,2015-12-02.
27. 褚庆昕,罗宇. 一种具有阶梯型反射器的八木天线[P]. CN204834891U,2015-12-02.
28. 吴光胜,马建国,邬海峰,成千福,朱守奎. 一种双级逆D类功率放大电路及射频功率放大器[P]. CN104953961A,2015-09-30.
29. 吴光胜,马建国,成千福,朱守奎,邬海峰. 一种E类功率放大器的补偿电路及其器件参数获取方法[P]. CN104953966A,2015-09-30.
30. 吴光胜,马建国,成千福,朱守奎,邬海峰. 一种E类功率放大器的等效电感电路及器件参数获取方法[P]. CN104917473A,2015-09-16.
31. 马凯学,闫宁宁. 微波毫米波和太赫兹电路及相控阵的低功率波束形成方法[P]. CN104836551A,2015-08-12.
32. 马建国,成千福,朱守奎. 一种高效率双频带F类功率放大器[P]. CN204290894U,2015-04-22.
33. 褚庆昕,罗宇. 一种改进的双极化基站天线[P]. CN204067577U,2014-12-31.
34. 褚庆昕,罗宇. 一种由多个定向天线组成的MIMO天线[P]. CN203218458U,2013-09-25.
35. 马建国,张为,张亮,赵毅强. 高中频超外差+零中频结构的射频前端[P]. CN102832959A,2012-12-19.
36. 雷雪梅,王科平,额布日力吐. 具有功率检测功能的射频或微波放大电路[P]. CN202334449U,2012-07-11.
37. 王志功,王科平. 平面转折射频袖珍隐形天线[P]. CN101098040,2008-01-02.
38. An Wenxing, Shen Zhongxiang, Chung Peijung, Wu Fangming. Dual-band dual-port antenna structure[P]. US10236579.
39. Yang Fan, An Wenxing, Xu Shenheng, Li Maokun. Double-layer planar phase modulation device[P]. US10193232.
40. Kaixue Ma, Jiangmin Gu, Yang Lu, Kiat Seng Yeo,Power amplifier and linearization techniques using active and passive devices[P].US9,130,511 B2.
41. Kaixue Ma, Yang Lu, Jiangmin Gu, Kiat Seng Yeo,Miniature passive structures for ESD protection and input ans output matching[P].US9,337,157 B2.
42. Donald Disney, Fanyi Meng, Xiang Yi, Chirn Chye Boon, Integrated DC-DC Boost Converter With Gallium Nitride Power Transistor[P], US 15/648,105.
43. Kaixue Ma, Kok Meng Lim,Kiat Seng Yeo, Jian-guo Ma,Multiple-mode filter for radio frequency integrated circuits[P],US20140035703A1.
44. Kaixue Ma, Shouxian Mou, Kiat Seng Yeo,Miniaturized passive low pass filter[P],US20130328642A1
45. Kaixue Ma, Nagarajan Mahalingam, Shouxian Mou, Kiat seng Yeo,Integrated Circuit Architecture With Strongly Coupled LC Tanks[P],US20130307630A1.
46. Kaixue Ma,Keping Wang,Yeo Kiat Seng,Miniature Passive Structures, High Frequency Electrostatic Discharge Protection Networks, and High Frequency Electrostatic Discharge Protection Schemes[P],US949625B2.
学生培养与国际交流
团队现有博士研究生31人,硕士研究生83人。
学生获奖情况
所指导学生中,其中 1 名博士已在微波领域顶级期刊 IEEE TMTT 发表 4 篇论文;1 名合作指导博士获国家青年千人,1 名博士已经获聘 985 高校“长聘教授”。2 名博士生分别在拥有“芯片奥林匹克”美誉的 IEEE ISSCC 发表高水平论文;1 名博士获得荣获 2018 年 UCMMT 会议最佳学生论文一等奖(评分第一)、全国微波年会学生论文最高奖“林为干教育发展基金优秀论文奖”。 指导博士生获中国电子学会第七届电子设计竞赛(华东赛区)团体二等奖,中国电子学会第七届电子设计竞赛决赛团体铜奖;指导硕士生参加2019年“华为杯”中国研究生创“芯”大赛,荣获全国决赛三等奖;指导本科生在第三届全国大学生集成电路创新创业大赛获华北分区一等奖,全国总决赛二等奖;学生在 ISSCC,TVLSI,TCAS-II,MWCL, IEEE Sensor Journal等顶级会议和期刊上发表文章,获得国家发明专利授权多项,积极推进科研成果应用到工业生产实践。
国际交流合作
为了加强国际交流与合作,团队积极参与并筹备国际会议,为团队成员提供与业内学术大家近距离交流互动的机会。鼓励并支持硕博研究生参与国际科研交流活动,拓宽国际视野。
团队于2019年参与及筹备《先进芯片与微系统国际研讨会暨后摩尔时代三维异质异构集成电路技术与产业发展研究》项目研讨会,邀请来自多个国家的知名教授,数名IEEE Fellow齐聚一堂,共同探讨后摩尔时代集成电路的发展。
此外,团队硕博研究生近年来多次参加国际会议,如先进芯片微系统国际研讨会、PIERS会议、IMS会议、UCMMT会议APMC会议等,并在大会上做会议报告。
2019.10 先进芯片微系统国际研讨会
2019年课题组学生参加APMC会议并作报告 2015年课题组老师学生参加IMS会议
2017年课题组学生参加PIERS会议并作报告 2018年课题组学生参加IMS会议并作报告
学生就业情况
指导的博士研究生多人毕业后进入国内高校进行教学科研工作,如天津大学、天津工业大学、陕西科技大学、天津城建大学、北京工业大学等;多名硕士研究生获得获聘企业特别聘任 Special offer,毕业硕士生均工作于国内知名公司和研究所中,如:唯捷创芯(天津)电子技术股份有限公司、广州慧智微电子有限公司、北京昂瑞微电子技术有限公司、锐石创芯(深圳)科技有限公司、汉天下有限公司、上海贝岭股份有限公司等;指导的学生多人毕业后进入国际顶尖高校攻读博士,如俄亥俄州立大学、佐治亚理工学院等。
一、 博士后招聘
为了营造良好的科研氛围,保证科研工作的顺利进行,团队十分注重成员科研能力的提高以及团队整体科研水平的提升。根据发展和研究需要,团队长期面向社会诚聘英才,热忱欢迎集成电路相关领域的有志之士加入我们一起大展鸿途。团队会为博士后提供充足的研究经费和良好的科研条件,提供有竞争力的薪酬及其它待遇,表现突出者团队另有奖励;同时,博士后在站期间能够享受天津大学其他相关福利。
二、 团队管理
为了保证科研工作的顺利进行,创造良好的科研工作环境,提高团队的运行质量,建立、实施和保持团队管理体系,达到“科学、规范、安全、高效”的目的,制定了相关管理制度,提高科研人员的工作素质,保证实验工作质量。
实验室规章制度
三、团队活动
为了丰富大家的科研生活,逢教师节、元旦等重要节日,团队会统一筹备“茶话会”等集体活动来加强师生互动,增加团队凝聚力和创造力。除此之外,团队还会定期举办聚餐、户外拓展等集体活动,融洽的师生关系使团队实力和综合素养得到了全面提升。
1、教师节团建
“茶话会”合影留念
“茶话会”发言交流
2、新年团建
年会合影留念
年会颁奖
年会游戏
3、师生小聚
4、户外团建
团队协作活动
团队聚餐
四、团队精神
世上从来就没有一劳永逸的坚持和努力。所有的驾轻就熟,都需要日复一日的打磨和精进。美好一天从“不言弃”开始!
一、招生方向
电子科学与技术 材料科学与工程
信息与通信工程 控制科学与工程
计算机科学与工程 数学 物理学
光学工程 仪器科学与工程 软件工程等
二、招生专业
学术型博士研究生:电路与系统、微电子学与固体电子学、电磁场与微波技术
专业型博士研究生:电子信息
学术型硕士研究生:电路与系统、微电子学与固体电子学、电磁场与微波技术
专业型硕士研究生:电子信息
三、招生人数
推免研究生(含直博生):25—35人
博士:6—8人
四、联系方式
地址:天津市南开区卫津路92号天津大学卫津路校区20教学楼6楼
邮箱:冯枫 ff@tju.edu.cn;闫宁宁 ningning.yan@tju.edu.cn;王勇强 wangyongqiang008@tju.edu.cn
天津大学研究生院招生办公室
文件上传中...