导师团队
高温隔热密封材料与技术团队
浏览量:4839   转发量:72

联系方式

Contact Information

  • 所属院系:材料科学与工程学院
  • 所属专业: 材料学  、 材料与化工
  • 邮箱 : lwyan@tju.edu.cn
  • 工作电话 : -

团队简介

Team Introduction

高温隔热密封材料与技术团队共有教师八人,包括教授三人(刘家臣、孙晓红、侯峰)、副教授两人(郭安然、闫利文)、助理研究员一人(张雪颖)、工程师两人(胡小侠、马晓晖)。团队面向国防、军工及航天航空等领域重大战略需求,以高超声速飞行器、战略导弹、重型燃气轮机等国防装备应用需求为牵引重点开展耐高温热防护及热密封材料、氧化物陶瓷复合材料、陶瓷纤维隔热材料,陶瓷增材制造等方面的基础理论和应用研究,支撑了相关国家战略任务和重点工程的开展为我国相关型号的研制做出了重要贡献,产生了重大的军事与社会效益。团队相继承担国家、省部级及各类军工项目90余项,包括国家重大专项子课题、军口863、国家973、国家自然科学基金、配套项目等,发表SCI收录学术论文300余篇,获得授权发明专利50余项。近五年获批科研经费累计6000余万元。课题组目前在读博士生15人,硕士生21人。

  • 研究方向Research Directions
高温隔热密封材料,氧化物陶瓷纤维隔热材料,结构功能一体化陶瓷,陶瓷气凝胶材料,陶瓷热防护复合材料,陶瓷增材制造
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
团队展示


项目情况

国家自然科学基金:

51272171   莫来石纤维、晶须网络结构材料及其弹性变形行为

51372164   氧化物及热密封材料的高温弹性模量与变形行为研究

51472176   氧化铝晶片镶嵌互锁结构陶瓷设计及其可变性机制

51572298   先进飞行器热防护材料的抗撞击性能及其损伤行为研究

51502196   电纺双相前驱体制备纳米莫来石纤维

51672187   高温密封腻子材料设计及其粘弹性机制研究

51772203   高辐射涂层的柔性化设计及其机理

51872194   耐高温纳米莫来石纤维气凝胶结构设计及其隔热机制与结构稳定性研究

此外,承担国家重点研发计划项目、国家重大专项工程项目、装备预研项目等20余项


报考意向
招生信息
材料科学与工程学院
硕士研究生
  • 序号
  • 专业
  • 招生人数
  • 年份
报考意向
姓名:
手机号码:
邮箱:
毕业院校:
所学专业:
报考类型:
博士
硕士
个人简历*

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
成绩单*

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
其他材料:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
备注:
招生说明

天津大学硕士研究生招生导师团计划”是天津大学赋予具备“高水平师资、高水平科研项目、浓郁学术氛围”等条件的优秀团队的自主招生计划。该计划所接收的推荐免试硕士研究生的本科毕业学校(不含天津大学)应为一流大学建设高校(2017年版)。其中,高温隔热密封材料与技术团队因其优秀的师资,高水平的科研项目和卓越的研究生培养体系而拥有2个硕士生招生名额。导师团队现面向全国预招收2026年本科毕业的推免硕士生2名
报考学生专业为材料科学与工程、材料学或无机非金属材料相关专业。
根据课题组研究方向特点,无机非金属材料专业毕业生及结构陶瓷、高温陶瓷研究方向学生优先考虑。


研究成果

2025年:

1.     JIANG J P, YAN L W, LI J T, etal. Lightweight and resilient SiBCNa/mullite/SiCnw composite for thermalinsulation and electromagnetic wave absorption [J]. Ceram Int, 2025, 51(2):2315-23.

2.     JIANG J P, YAN L W, SONG M J,et al. Thermally insulated C/SiC/SiBCN composite ceramic aerogel with enhancedelectromagnetic wave absorption performance [J]. Ceram Int, 2025, 51(1): 17-24.

3.     LI X X, YAN L W, GUO A R, etal. Lightweight porous(La1/6Nd1/6Sm1/6Eu1/6Gd1/6Ho1/6)2Zr2O7 ceramics with two-stagepore structure and low thermal conductivity [J]. Ceram Int, 2025, 51(9):11105-11.

4.     LIANG Z J, ZHANG X Y, MA X H,et al. Nested-Structure ZrO2-MoSi2-SiC High-Emissivity Coating on the FlexibleFiber Fabric with Enhanced Bonding Strength and Thermal Insulation Performance[J]. ACS Appl Mater Interfaces, 2025, 17(14): 21785-95.

5.     LIU P S, YANG X K, YAN L W, etal. Pressureless joining of SiC ceramic in oxidizing atmosphere using a SiCnanowires reinforced composite adhesive [J]. Ceram Int, 2025, 51(4): 5077-84.

6.     ZHANG K L, DONG X, CHEN Y, etal. Influence of photosensitive hydroxy siloxane on the mechanical propertiesof silicon-based ceramic cores prepared by digital light processing [J]. CeramInt, 2025, 51(3): 3394-403.

7.     JIA J J, LI Z X, SANG Z Y, etal. High-throughput Design of Single-atom Catalysts with Nonplanar and TriplePyrrole-N Coordination for Highly Efficient H2O2 Electrosynthesis [J]. AngewChem-Int Edit, 2025: 12.

8.     LI P X, YI Z H, WANG Y X, etal. The use of an oxidized carbon nanotube film to control Zn deposition andeliminate dendrite formation in a Zn ion battery [J]. New Carbon Mater, 2025,40(1): 154-66.

9.     NIE J H, LI Z X, LIU W, et al.Recent Progress in Oxygen Reduction Reaction Toward Hydrogen PeroxideElectrosynthesis and Cooperative Coupling of Anodic Reactions [J]. Adv Mater,2025: 27.

10.  TAN H T, SI W P, ZHANG R G, etal. Dual Active Sites with Charge-asymmetry in Organic Semiconductors PromotingC-C Coupling for Highly Efficient CO2 Photoreduction to Ethanol [J]. AngewChem-Int Edit, 2025, 64(4): 9.

11.  TIAN Y R, CHEN R, LIU X Q, etal. Highly stabilized and selective ammonia electro-oxidation over CuNimetallic glass nanoarray [J]. Carbon Energy, 2025, 7(2): 13.

12.  WANG K, LI J T, HU X X, et al.Validation of heat transfer models and optimization of heat shieldingperformance of high-temperature multilayer insulations for hypersonic vehicles[J]. Appl Therm Eng, 2025, 258: 9.

 

2024年:

1.     CHEN Y, WANG L M, XU X J, etal. Effect of ZrSiO4 as additive on the mechanical properties of DLP printingporous mullite ceramics [J]. Ceram Int, 2024, 50(24): 54408-19.

2.     JIANG J P, XUE Y J, LI J T, etal. Microwave absorption and thermal insulation integrated polymer-derivedSiBCN/SiBCNnf ceramic aerogel with enhanced mechanical property [J]. Ceram Int,2024, 50(21): 41527-33.

3.     JIANG J P, YAN L W, LI J T, etal. Lightweight, thermally insulating SiBCN/Al2O3 ceramic aerogel with enhancedhigh-temperature resistance and electromagnetic wave absorption performance[J]. Chem Eng J, 2024, 501: 11.

4.     JIANG J P, YAN L W, XUE Y J, etal. Lightweight and thermally insulating polymer-derived SiBCN/SiCnw ceramicaerogel with enhanced electromagnetic wave absorbing performance [J]. Chem EngJ, 2024, 482: 9.

5.     LI J T, HU X X, JIANG J P, etal. Gradient coating increases the temperature resistance of ceramic fiberfabric [J]. Ceram Int, 2024, 50(23): 49989-97.

6.     LI X X, YAN L W, GUO A R, etal. Lightweight porous mullite-silica ceramics with multistage pore structure,low thermal conductivity and improved strength [J]. Ceram Int, 2024, 50(19):35609-14.

7.     LI Z D, ZHANG X Y, YAN L W, etal. High reflectivity and high emissivity integrated double layer coating onthe flexible alumina fiber fabric with enhanced heat-dissipation efficiency[J]. Ceram Int, 2024, 50(16): 28857-66.

8.     LI Z X, JIA J J, SANG Z Y, etal. A Computation-Guided Design of Highly Defined and Dense Bimetallic ActiveSites on a Two-Dimensional Conductive Metal-Organic Framework for EfficientH2O2 Electrosynthesis [J]. Angew Chem-Int Edit, 2024, 63(46): 9.

9.     LIU P S, YANG X K, ZHANG X, etal. High temperature resistant composite adhesive with a remarkable bondingstrength in a wide temperature range from 25 °C to 1200°C [J]. Ceram Int, 2024, 50(19): 36747-57.

10.  MA X H, WU J Y, MENG L Y, etal. Grain growth behavior and properties of high-entropy pseudobrookite(Mg,Co,Ni,Zn)Ti2O5 ceramics [J]. J Adv Ceram, 2024, 13(6): 757-68.

11.  SONG M J, YAN L W, LI Y F, etal. Thermal insulated C/SiC nanofiber aerogel with high thermal stability andsuperior electromagnetic wave absorption performance [J]. Ceram Int, 2024,50(16): 28907-17.

12.  WANG Z Y, XU X J, XU T F, etal. Porous mullite fiber-based ceramics inspired by biomimetic natural pinewood [J]. Ceram Int, 2024, 50(1): 584-92.

13.  WU J Y, ZHANG J F, HU X X, etal. Ultrahigh Degree of Cationic Disorder, Configurational Entropy in New Typeof High-Entropy Pseudobrookite Phase [J]. Small, 2024, 20(26): 12.

14.  WU Z, XU T F, XU X J, et al.Fabrication of mullite micro/nano fiber-based porous ceramic with excellentmechanical and thermal insulation properties [J]. Ceram Int, 2024, 50(1):2415-23.

15.  ZHANG X, HUANG Z, JIANG J P, etal. Flexible and resilient mullite fiber felts modified by SiBCN ceramicaerogel with enhanced thermal insulation performance [J]. Ceram Int, 2024,50(20): 38274-80.

16.  ZHANG X, YANG L Y, HAN S B, etal. Multifunctional mullite fiber reinforced SiBCN ceramic aerogel withexcellent microwave absorption and thermal insulation performance [J]. CeramInt, 2024, 50(19): 35145-53.

17.  CHEN R, LIU W, SANG Z Y, et al.Identification of the highly active Zn-N4 sites with pyrrole/pyridine-Nsynergistic coordination by dz2+s-band center for electrocatalytic H2O2production [J]. J Energy Chem, 2024, 98: 105-13.

18.  GUO B T, JIANG Q, MAO Z X, etal. B-F dual-doped carbon nanotubes for multi-site and high-rate two-electronoxygen reduction reaction electrocatalysis [J]. Carbon, 2024, 222: 7.

19.  LI Y H, SI W P, PAN Y, et al.Tuning active sites of carbon nitride using NiO nanoparticles for efficientphotocatalytic generation of hydrogen peroxide [J]. Appl Surf Sci, 2024, 662:9.

20.  LI Z X, JIA J J, SANG Z Y, etal. A Computation-Guided Design of Highly Defined and Dense Bimetallic ActiveSites on a Two-Dimensional Conductive Metal-Organic Framework for EfficientH2O2 Electrosynthesis [J]. Angew Chem-Int Edit, 2024, 63(46): 9.

21.  LIU W, CHEN R, SANG Z Y, et al.A Generalized Coordination Engineering Strategy for Single-Atom Catalyststoward Efficient Hydrogen Peroxide Electrosynthesis [J]. Adv Mater, 2024,36(38): 10.

22.  MAO Z X, TIAN Y R, GUO B T, etal. Modulation of charge distribution enabling CuNi nano-alloys for efficientammonia oxidation reaction to nitrite production [J]. Chem Eng J, 2024, 484: 8.

23.  PAN Y, SI W P, LI Y H, et al.Promoting exciton dissociation by metal ion modification in polymeric carbonnitride for photocatalysis [J]. Chin Chem Lett, 2024, 35(12): 5.

24.  PENG W, CHEN R, LIU X Q, et al.Ultra-Rapid Electrocatalytic H2O2 Fabrication over Mono-Species andHigh-Density Polypyrrolic-N Sites [J]. Small, 2024, 20(43): 9.

25.  PENG W, QIU J C, LIU X Q, etal. Defective PTFE with Dense Active Sites Enabling Rapid H2O2 Production forEfficient Water Purification [J]. Adv Funct Mater, 2024, 34(52): 9.

26.  TONG Y Y, LIU J X, SU B J, etal. High-rate electrochemical H2O2 production over multimetallic atom catalystsunder acidic-neutral conditions [J]. Carbon Energy, 2024, 6(1): 19.

27.  YI Z H, JIA J J, YANG J L, etal. Zinc Affinity and Hydrogen Evolution Trade-Off for Homogenous Zn Depositionin Reversible Zn Ion Batteries [J]. Small, 2024, 20(50): 9.

28.  YU J, YI Z H, YAN X, et al.Deeply Discharged, Quiescently Stable, and Long-Life Zn Anode by SpontaneousSEI Formation [J]. Small, 2024, 20(40): 9.

29.  ZENG Y, SANG Z Y, LIU X Q, etal. N-doped carbon nanotube arrays Encapsuled with cobalt-nickel alloy assuperior free-standing electrodes for ultrahigh-rate hydrogen peroxideproduction [J]. Sustain Mater Technol, 2024, 40: 8.

30.  ZHANG L, SUN Y Z, XU H F, etal. p-XRF for the Detection of the Elemental Content in the Glaze Layer ofChinese Glazed Tiles [J]. Int J Archit Herit, 2024, 18(1): 150-63.

31.  WU J Y, ZHANG J F, HU X X, etal. Ultrahigh Degree of Cationic Disorder, Configurational Entropy in New Typeof High-Entropy Pseudobrookite Phase [J]. Small, 2024, 20(26): 12.

32.  WU Z, XU T F, XU X J, et al.Fabrication of mullite micro/nano fiber-based porous ceramic with excellentmechanical and thermal insulation properties [J]. Ceram Int, 2024, 50(1):2415-23.


生源学校

一流大学建设高校42所

1. A类36所

北京大学、中国人民大学、清华大学、北京航空航天大学、北京理工大学、中国农业大学、北京师范大学、中央民族大学、南开大学、天津大学、大连理工大学、吉林大学、哈尔滨工业大学、复旦大学、同济大学、上海交通大学、华东师范大学、南京大学、东南大学、浙江大学、中国科学技术大学、厦门大学、山东大学、中国海洋大学、武汉大学、华中科技大学、中南大学、中山大学、华南理工大学、四川大学、重庆大学、电子科技大学、西安交通大学、西北工业大学、兰州大学、国防科技大学

2. B类6所

东北大学、郑州大学、湖南大学、云南大学、西北农林科技大学、新疆大学


学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

天津大学研究生院招生办公室

文件上传中...

分享
回到
首页
回到
顶部